Improving the State of the Art in Inexact TSP Solving Using Per-Instance Algorithm Selection

نویسندگان

  • Lars Kotthoff
  • Pascal Kerschke
  • Holger H. Hoos
  • Heike Trautmann
چکیده

We investigate per-instance algorithm selection techniques for solving the Travelling Salesman Problem (TSP), based on the two state-of-the-art inexact TSP solvers, LKH and EAX. Our comprehensive experiments demonstrate that the solvers exhibit complementary performance across a diverse set of instances, and the potential for improving the state of the art by selecting between them is significant. Using TSP features from the literature as well as a set of novel features, we show that we can capitalise on this potential by building an efficient selector that achieves significant performance improvements in practice. Our selectors represent a significant improvement in the state-of-the-art in inexact TSP solving, and hence in the ability to find optimal solutions (without proof of optimality) for challenging TSP instances in practice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

INTEGRATING CASE-BASED REASONING, KNOWLEDGE-BASED APPROACH AND TSP ALGORITHM FOR MINIMUM TOUR FINDING

Imagine you have traveled to an unfamiliar city. Before you start your daily tour around the city, you need to know a good route. In Network Theory (NT), this is the traveling salesman problem (TSP). A dynamic programming algorithm is often used for solving this problem. However, when the road network of the city is very complicated and dense, which is usually the case, it will take too long fo...

متن کامل

A Hybrid Modified Meta-heuristic Algorithm for Solving the Traveling Salesman Problem

The traveling salesman problem (TSP) is one of the most important combinational optimization problems that have nowadays received much attention because of its practical applications in industrial and service problems. In this paper, a hybrid two-phase meta-heuristic algorithm called MACSGA used for solving the TSP is presented. At the first stage, the TSP is solved by the modified ant colony s...

متن کامل

Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm

The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...

متن کامل

Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm

The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...

متن کامل

Online Streaming Feature Selection Using Geometric Series of the Adjacency Matrix of Features

Feature Selection (FS) is an important pre-processing step in machine learning and data mining. All the traditional feature selection methods assume that the entire feature space is available from the beginning. However, online streaming features (OSF) are an integral part of many real-world applications. In OSF, the number of training examples is fixed while the number of features grows with t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015